Wednesday, April 8, 2020

CMAAO CORONA FACTS and MYTH BUSTER 40




Dr K K Aggarwal
President Confederation of Medical Associations of Asia and Oceania

351: What is droplet

Fact: The term “droplet” consists mostly of water with various inclusions, depending on how it is generated.

Naturally produced droplets from humans (droplets produced by breathing, talking, sneezing, coughing) include various cells types (epithelial cells and cells of the immune system), physiological electrolytes contained in mucous and saliva (Na+, K+, Cl-), as well as, potentially, various infectious agents (bacteria, fungi and viruses).

352: What are artificially generated droplets in a health-care setting

Fact: During e.g. suction of respiratory tract, the main constituent will also be sterile water, with various electrolytes (e.g. “normal” or physiological saline, including Na+, Cl-) and often the molecules of a drug (e.g. salbutamol for asthmatics).

353: What are the sizes

Both these naturally and artificially generated droplets are likely to vary in both size and content.

Droplets >5 μm tend to remain trapped in the upper respiratory tract (oropharynx — nose and throat areas), whereas droplets ≤5 μm have the potential to be inhaled into the lower respiratory tract (the bronchi and alveoli in the lungs).

354: What are the types

Currently, the term droplet is often taken to refer to droplets >5 μm in diameter that fall rapidly to the ground under gravity, and therefore are transmitted only over a limited distance (e.g. ≤1 m).

In contrast, the term droplet nuclei refers to droplets ≤5 μm in diameter that can remain suspended in air for significant periods of time, allowing them to be transmitted over distances >1 m (Stetzenbach, Buttner & Cruz, 2004Wong & Leung, 2004).

355: Is there any other classification

Other studies define “large” droplets, “small” droplets and droplet nuclei being >60 μm in diameter, ≤60 μm in diameter and <10 μm in diameter, respectively (Tang et al., 2006Xie et al., 2007).

356: The movements of droplets depend on what factors

The naturally and artificially produced aerosols will contain a range of droplet sizes, whose motion will depend significantly on various environmental factors, such as gravity, the direction and strength of local airflows, temperature and relative humidity (which will affect both the size and mass of the droplet due to evaporation).

357: On what factors actual size distribution of droplets depends

The actual size distribution of droplets depends on parameters, such as the exhaled air velocity, the viscosity of the fluid and the flow path (i.e. through the nose, the mouth or both) (Barker, Stevens & Bloomfield, 2001). There is also a great individual variability (Papineni & Rosenthal, 1997Fennelly et al., 2004).

358: How are droplets produced in the body

Humans can produce respiratory aerosols (droplets) by several means, including breathing, talking, coughing, sneezing and even singing (Wong, 2003Toth et al., 2004).

359: What are the physiological variations

There is a natural physiological variation in the volume and composition of such aerosols generated between individuals and even within the same individual during any of these activities.

360: Can infection change these variabilities

An infection is likely to increase this variability, which itself may vary as the host immune system starts responding to the infection over time. For example, a patient with chickenpox will have no specific antibodies to the virus at the beginning of the infection, making the viral load much higher and thus potentially more transmissible during the acute, febrile, coughing, prodromal phase of the infection than later, when the specific antibody response starts to develop.

361: How to explain super spreaders

Super-spreaders — infected individuals who manage to infect many others, generating many more secondary cases than is expected on average. This may be due to a number of reasons, including a poor host immune response to controlling the infection, concomitant diseases or other respiratory infections that increase the degree of shedding of the infectious agent, and environmental factors favourable to the survival of such agents (Bassetti, Bischoff & Sherertz, 2005).

362: What is the difference between coughing and sneezing

Published data have suggested that sneezing may produce as many as 40 000 droplets between 0.5–12 μm in diameter (Cole & Cook, 1998Tang et al., 2006) that may be expelled at speeds up to 100 m/s (Wells, 1955Cole & Cook, 1998), whereas coughing may produce up to 3000 droplet nuclei, about the same number as talking for five minutes (Cole & Cook, 1998Fitzgerald & Haas, 2005Tang et al., 2006).

Despite the variety in size, large droplets comprise most of the total volume of expelled respiratory droplets. Further data on the behaviour of droplet dispersion in naturally generated aerosols are needed.

363” What are infectious aerosols

They are generated when they come into contact and mix with exhaled air that may carry infectious agents from patients' respiratory tracts.

·        intubation and related procedures (e.g. manual ventilation, suctioning)
·        cardiopulmonary resuscitation
·        bronchoscopy

364: What is the difference between droplet and air born illness

A classic study of airborne transmission, Wells (1934) was able to identify the difference between disease transmission via large droplets and by airborne routes.

Wells found that, under normal air conditions, droplets smaller than 100 μm in diameter would completely dry out before falling approximately 2 m to the ground. This finding allowed the establishment of the theory of droplets and droplet nuclei transmission depending on the size of the infected droplet.
Wells' study also demonstrated that droplets could transform into droplet nuclei by evaporation.

365: How are droplet nuclei floating on the air carried by the movement of air

Entrainment of air into neighbouring airspaces may occur during the most innocuous daily activities; for example, as a result of people walking, or the opening of a door between a room and the adjacent corridor or space (Hayden et al., 1998Edge, Paterson & Settles, 2005Tang et al., 20052006). In addition, the air temperature (and therefore air density) differences across an open doorway will also cause air exchange to occur between the two areas, providing a second mechanism to allow air into other areas (Tang et al., 20052006) (see Figure C.3).

366: What about daily body movements

Even a patient simply sitting in or beside the bed will create air temperature differences from their body heat. A higher air temperature directly above the patient's head (or body, if lying down) will create convective air currents that may entrain potentially infectious air from neighbouring spaces into the higher temperature column rising air above the patient (Craven & Settles, 2006). Patients lying in bed, breathing or sleeping, may produce exhaled airflows that can reach the airspace of a patient in the neighbouring bed, and even further in the presence of certain types of ventilation systems (see below) (Qian et al., 2006). In the same way, other mechanical devices, including fans, televisions and medical equipment, may also disturb nearby airflows and disseminate air from nearby patients to the rest of the ward.

Reference

2009, World Health Organization. Atkinson J, Chartier Y, Pessoa-Silva CL, et al., editors. https://www.ncbi.nlm.nih.gov/books/NBK143281/


No comments:

Post a Comment